
We then have the following approximate relation for the speed of sound in the DP on the basis 

of (4) : 

c=c3+(c2--c~)  1-- I - - \ ~ /  ~r r ~ r ~ 8 .  (5) 

The pressure and density of the DP are determined from the speed of sound via the isen- 
trope. The error in describing the numerical calculations is about I% for the most sensitive 
psrameter: the pressure. 

Therefore~ analytic relationships (2)-(5) describe the numerical solution with high 
accuracy for the distribution of the parameters behind a stationary detonation-wave front 
in a perfect gas and satisfy the asymptotes of the exact solution. 
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DESCRIPTION OF SHOCK-WAVE PROCESSES IN A TWO-PHASE MEDIUM CONTAINING 

AN INCOMPRESSIBLE PHASE 

V. A. Vakhnenko and B. I. Palamarchuk UDC 532.5:532.593 

The motion of a two-phase medium is analogous to that of a perfect gas with a certain 
effective adiabatic parameter within the framework of the one-velocity model when the volume 
proportion of condensed phase is small [I-3]. If on the other hand no constraint is placed 
on the volume proportion, the basic hydrodynamic equations contain it as a variable addi- 
tional to those in the analogous gasdynamic equations. This substantially complicates solv- 
ing the nonstationary hydrodynamic equations and has led to the need to develop the methods 
given in [4, 5]. 

Here we propose a method of transforming the variables that leads to complete analogy 
between the equations for a perfect gas and those for a two-phase medium with any volume oc- 
cupied by the condensed phase. It is shown that the motion of a two-phase medium in the 
transformed coordinate system is completely analogous to that of a perfect gas, which means 
that the methods developed for perfect gases can be used to solve shock-wave problems. 

The scope for the method is demonstrated by reference to the strong explosion state in 
a two-phase medium. 

I. Basic Concepts. Consider a homogeneous two-phase medium consisting of condensed 
and gas phases uniformly distributed in the volume. We assume as follows: I) The condensed 
phase is incompressible, 2) the gas obeys the equation of state for a perfect gas with con- 

e 
stant values for the specific heats, 3) the partial pressure of the condensed phase is neg- 
ligibly small, 4) the speeds of the condensed phase and gas are equal, and 5) there is no 
reaction between the components. 

Kiev. Translated from Zhurnal Prikladnoi Mekhanihi i Tekhnicheskoi Fiziki, No. i, pp. 
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We introduce the following symbols: p, p, u, F0, a0, E the pressure, density, speed, 
ratio of the specific heats, equilibrium speed of sound, and internal energy of the two-phase 
medium, y and pg the ratio of the specific heats and the density for the gas, E and d the 
volume proportion and density of the condensed phase, r the spatial variable, t time, ~ a 
parameter taking the values I, 2, and 3 correspondingly for planar, cylindrical, and spheri- 
cal symmetries, and the subscripts 0 and I indicating values of the parameters ahead of and 
at the shock-wave front correspondingly. 

With these assumptions, the conservation laws for mass, momentum, and energy give us 
the following system of equations for the one-dimensional nonstationary motion of the two- 
phase medium: 

--$F + u p + P OrV-l~ 
~ - i  o~ (l.la) 

p(~+u o) @ 
u + ~-r ---- 0; (1.1b) 

(~--F a ) E  P arv-~u O. 
P +U-aF + r~-I Or = ( 1 . 1 c )  

With these assumptions, the equation of state for the two-phase medium may be put as 

E = p(i -- ~)l[p(r -- ~)1, (I. Id) 

where F is some effective parameter defining a relationship of the form of (1.1d) for a cer- 
tain range in the thermodynamic parameters. For definiteness we assume that F is constant 
within the relevant flow range. In the particular case F = F0, (1.1d) is the equation of 
state for a thermodynamically equilibrium two-phase mixture [I]. 

With the above assumptions we have 

P/Po = ~/%, ( I . 2) 

and so equation of state (1.1d) does not amount to that for a perfect gas. On the other 
hand, all the other equations in (1.1) are analogous to those describing a perfect gas. We 
now show that by transforming the variables in (1.1) one can define a coordinate system in 
which all the definitive equations are completely analogous in form to those for a perfect 
gas and are not dependent explicitly on e. The following physical arguments provide a basis 
for eliminating the volume proportion from (1.1). 

In fact, if the condensed phase does not vary in volume in the compressible medium (con- 
dition I) and does not make a contribution to the pressure (condition 3) and moves along the 
paths of the particles of the compressible phase (condition 4), then one can assume that elim- 
inating the volume occupied by the condensed phase should substantially simplify the mathema- 
tical description of the motion. 

We transform the variables in (1.1) by denoting them by primes and use the dimensionless 
coefficients a i to relate the variables. 

Elimination of the volume e of the incompressible phase means that the mass of the me- 
dium should be distributed over the residual volume of the compressible phase, which enables 
us to relate the densities in the form 

p' = alp/(i -- e). (I .3a) 

The forms of the terms in (1.1) reflecting the effects of spatial symmetry give us for the 
flow speed that 

u' = a ~ u ( r / r ' ) ~ - l .  ( 1 . 3b) 

From ( 1 . 3 a )  and  ( 1 . 3 b )  we h a v e  t h e  r e l a t i o n  b e t w e e n  t h e  s p a t i a l  c o o r d i n a t e s  a s  

dr" = a a ( l ~ -  ~)dr + a4su'dt. ( 1 . 3 c )  

A s t u d y  o f  ( 1 . 1 )  i n d i c a t e s  t h e  n e e d  t o  t r a n s f o r m  t h e  t i m e  c o r r e s p o n d i n g l y :  

dr' = a~dt, (Ot'/Or)t = 0 .  ( 1 . 3 d )  

For generality we put 

P' = asp (1.3e) 
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and substitute (1.3) into (1.1) to get as follows with the following relations between the 
coefficients: 

a~ = a4, a2 • a6 = 1, a~/a5 = i /b  = b/al, Ob/Ot q- uOb/Or = 0 ,  ( 1 . 4 )  
b = (r ' / r ) ' - I  

as a s y s t e m  of  e q u a t i o n s  a n a l o g o u s  i n  s t y l e  to  t h o s e  d e s c r i b i n g  t h e  m o t i o n  of  a p e r f e c t  g a s :  

\aP- " { ~ + u ' - - ~  ~P'ar'] +--P' a ( r ' ) V - l u ' =  o, (r,)V-1 ar' 

t~'(~ ~,__a~u, op' -$F + ar'J +~-V '=0' (1.5) 
p,(  0 U' ? ,~ P' O(r')V-lu" 

a-~-q- ar /p.  (~;-- t) 4 P' =0. (r,)V-1 Or' 

It follows from (1.4) 
the different systems: 

that the following are the relations between the parameters in 

9' = (r'/r)2(v-')(  1 - -  e)-~P; (1 . 6a) 
u'  = u ( r ' / r )~ - ' ;  (1.6b) 

dr'  = (r ' / r ) ( l  - -  e)dr .6  (r ' / r )veu'dt;  ( 1 . 6 c )  

dt '  = (r ' /r)~dt ,  (Ot'/Or)t = 0; (1.6d) 

p ' = p ;  (1 .6e)  
(O/Ot -6 uO/Or)(r ' /r)v-1 - -  0; (1 .6 f )  

E '  = p ' / f p ' (F  -- 1)] = E(r'/r)2(~-v). ( 1 . 6 g )  

I f  t h e r e  i s  a l i n e a r  r e l a t i o n s h i p  b e t w e e n  t h e  change  in  volume o c c u p i e d  by the  medium 
and the  s p a t i a l  c o o r d i n a t e  ( i . e . ,  f o r  p l a n a r  symmet ry ,  9 = 1) ,  we can  pu t  a i  = 1. I n  t h e  
general case of arbitrary 9, the coefficients a i are functions of the symmetry and reflect 
the nonlinearity in the spatial-coordinate transformation when the volume changes. 

Then we can use (1.6) to transform (1.1) into (1.5), whose form is completely analogous 
with that of the corresponding equations for a perfect gas, which means that within the frame- 
work of the one-velocity model for a dispersed medium there exists a coordinate system in 
which the motion of the two-phase medium is completely analogous to that of a perfect gas. 
The analogy persists not only for the case where the volume proportion of the condensed phase 
is small [2] but also in the general case of an arbitrary volume content. Consequently, in 
order to solve (1.1) and (1.2) it is sufficient to use methods developed for the dynamics 
of perfect gases to solve (1.5) and use the transformation of (1.6) to solve the initial sys- 
tem. 

2. Self-Modeling Flows Containing Shock Waves. The above method has particular advan- 
tages in solving stationary problems and in describing a self-modeling flow. We consider 
the method in relation to the strong explosion stage in a two-phase medium. 

Let a finite amount of energy E0 be instantaneously deposited in an infinitely small 
volume of a two-phase medium. We restrict ourselves to distances from the explosion source 
where this wave can be considered as strong, i.e., when one can neglect the initial internal 
energy of the medium by comparison with E0, and we consider the propagation of the shock wave 
moving with speed 

D = d r f ~ t ,  ( 2 .  I)  

where  r f ( t )  i s  t h e  s h o c k - f r o n t  c o o r d i n a t e .  The s o l u t i o n  may be  d e f i n e d  in  p a r a m e t r i c  fo rm 
by the  u s e  of  d i m e n s i o n l e s s  v a r i a b l e s :  

R = P/Po, V =  u/D,  P = p/(poD~), N = r ~ f ,  % = r f / D .  ( 2 . 2 )  

We supplement (1.1) with the boundary conditions u = 0 at r = 0 and the following at the 
shock front [5] r = rf in order to solve for the point explosion: 

V = P = 2 ( i - -  eo)/(F + 1), R = (F + I ) / ( F - -  i + 2~o) ( 2 . 3 )  

together with the integral relation 
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rf I 

0 0 

(2.4) 

where o(9) = 2(v -- I)7 + (v -- 2)(v -- 3). 

With these assumptions, the flow described by (1.1) and (1.2) is self-modeling. The 
method of dimensions [6] shows that R, P, and V are functions of ~ alone. Then the problem 
is solved by solving the system 

R 8V v i 0P @v-iv 0, (y-~)o,~ v+--R-~ (2.5) ( v -  + =0,  

aP F P o~lv-w _ O. 

We now derive the dimensionless system corresponding to the primed coordinates and equa- 
tions relating it to (2.5). We show that the transformation can be written in algebraic form. 

Before system (1.5) is rendered dimensionless, we need to incorporate features arising 
in connection with the time transformation in the primed coordinate system. In the general 
case, the time varies in different ways at different points in space in the coordinate system 
(r', t') [denoted also as r'(t')]. It is convenient to transfer to the coordinate system 
(r', t~) [denoted as r'(t' i) also] in analyzing the self-modeling flow, where time varies 
identically for all points, i.e., ti = t. 

We assume that a time dt has passed in the unprimed coordinate system, during which the 
front has traveled at distance drf = Ddt, and this time interval at the shock-wave front will 
correspond to the time dt~ = (r'~ = (rf)Vdt the primed coordinate system, during which the 
front moves a distance drf(t') =~ D'dt~. On the other hand, D' can be put as 

! 

D' = drf  ( t ) /dt .  ( 2 . 6 )  

The shock-front coordinates are related via the unperturbed-medium parameters 

t t 

drf ( t f  ) = ( r f / r f  )(1 - -  %) drf .  ( 2 . 7 )  

C o n s e q u e n t l y ,  t h e  r e l a t i o n s h i p  b e t w e e n  t h e  s h o c k - f r o n t  s p e e d s  i s  

D' = (rf/r'f  ) v - l  (i - -  % ) D .  ( 2 . 8 )  

From ( 2 . 8 )  w i t h  ( 2 . 6 )  i t  f o l l o w s  t h a t  
t 

( r f  ( t ) /r f t )  v = l - -  %. ( 2 . 9 )  

This equation has an obvious interpretation: The ratio of the volumes in which the per- 
turbation propagates in a given time in the different coordinate systems is equal to the 
ratio of the volume of the gas phase (with ~ eliminated from consideration) to the entire 
volume of the two-phase mixture. 

Time varies identically at all points in space in the primed coordinate system, and 
here the coordinate varies as follows: 

dr' ( t'l) = (r/r') v dr' (t') = (r/r') v-1 (1 - -  e) dr -]- eu 'dt ,  ( 2 . 1  O) 

s i n c e  u '  = d r ' ( t ' ) / d t '  = d r ' ( t ) / d t .  E q u a t i o n  ( 2 . 1 0 )  c a n  b e  u s e d  w i t h  ( 1 . 6 a ) ,  ( 1 . 6 b ) ,  and  
(1.6e), which do not vary on passing from (r', t') to (r', tl), as a transformation relating 
to the coordinate systems (r, t) and (r', t~). 

The following equations define the dimensionless flow variables for system (I .5): 

= P/Po, = u' /D' ,  = P/(Po (D') ' ) ,  = r ~ '  \ rf ] --D-7; 

wh ere 

�9 dt; = ( r f / r f )  dt f  = dr, t 1 = t, 9o = 9 ; ( 1 - -  % / \  r f /  

We s u b s t i t u t e  ( 2 . 7 )  i n t o  ( 1 . 5 )  a n d  i n c o r p o r a t e  t h e  c o n v e r s i o n  f r o m  t '  t o  t ' [  = t t o  g e t  a d i -  
m e n s i o n l e s s  s y s t e m :  
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%, oR" ,. OR" R" 0 (rf)V-tV' __ O, 
- - r  + (V' - -  q ) ~ u  + (~l,)~_------- ~ on' 
ot 1 

. ,  ov-- ov._" ~'v' t oP' z o t ,+(v ' -n' ) -~u + - 7 ~  = o ,  

( ~ ,  , o )  p' 2z'p" rP' t o (n ' )v-xV'=o ' 
%, o, + (V ,  r l ) . ~  ~.~_..i+~._~_i~ t + l,.__....~(n,)v_............ ~ on' 

, = { r f ~ v  r'fdD, 
t �9 z i r ~ ] D ,  eq 

(2.11) 

We see that (2.11) differs from (2.5) in having a form analogous to the corresponding 

system for a perfect gas. 

We now consider the transformation relating (2.5) and (2.11). We render (1.6a), (1.6b), 
and (1.6e) dimensionless without difficulty. We devote particular attention to (2.10). We 
write the expression for the differentials as 

t r t ! 

d r = : r l d r f A - r f d ~ ] ,  d r ' = ~ l c l r f - t - r f d q  �9 (2 .12 )  

When these equations are substituted into (2.10), the terms containing dq and d~' for the 
self-modeling flow cancel, as will be evident below, i.e., we have 

( n '~-1 1 - ~  
dn' = k - ~ ]  /_- ~o d~]* (2 .13 )  

Then (2 .10 )  a f t e r  d i f f e r e n t i a t i o n  w i th  r e s p e c t  to t ime t and use  of  (2 .12 )  and (2 .13)  t a k e s  
the algebraic form 

(2.14) 

We represent the latter relation in differentials and use the first equation in (2.5) to get 
( 2 . 1 3 ) .  

We supplement (2.14) with (1.6a), and (1.6e) put in dimensionless form: 

n ( @ ) " - ~  = n, ( l  -_ ~o (R,  (@)~-~*-" - l ) )  - -  ~on 'v '  ( ~ , )  ~ - ' ~  , 

( TI ~ ' - I  R ,  = R ( ~I' ]2(v-1). t --  % p ,  = P , (1 - %) v '  = ~.-C/ V, ~-~-/ ~ - ~o B' t - ~----~' t~ = t, 
(2.15) 

to give us a relationship between the dimensionless parameters providing one-to-one corre- 
spondence between (2.5) and (2.11). We see that (2.15) is algebraic in form. 

The boundary conditions at a strong shock-wave front take the following form in the 
transformed dimensionless system: 

v'  = p'  = 2 / ( r  + t) ,  B' = (r  + t ) / ( r  - l ) .  ( 2 . 1 6 )  

It is readily seen that (2.16) and (2.3) are related by (2.15), with q = n' = I at the 
wave front. 

As there is a one-to-one correspondence between (2.5) and (2.11) and as the transforma- 
tion does not contain an explicit dependence on time, then if (2.5) has a self-modeling so- 
lution, (2o11) will have the same property. Consequently, P', R', V' are independent of time 
and it follows from (2.4) that r~D 2 = const, and on the basis of (2.9) we have z' =--v/2. 

Therefore, the problem on the strong explosion stage in the transformed coordinate sys- 
tem is that of solving (2.1J) without time derivatives for z' = --~/2; the form of the equa- 
tions is analogous to that for a perfect gas at the strong stage of explosion. This means 
that R', V', P' can be determined by using known self-modeling solutions and tabulated data 
as given in [6-8], while the true distributions of the density R, velocity V, and pressure P 
can be derived from (2.15). 

It is fairly simple to establish analytically the effects of the volume proportion of 
condensed phase on the laws of motion of the shock wave and the parameters at the shock front 
without resorting to deriving the distributions of P, V, and R. For this purpose we trans- 
form (2.4) by means of (2.15) as follows: 
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its, q- R, E o = ~ (v) 9orVfD ~ s _ t J \ + (V')~) Ol')~-ld~l'" 
0 

The method of dimensions gives us an equation for the shock-wave path in the form 

{ Eo ~1/(v+2)( t '~/(v+~) 
rf  = ~,&--~o] kt---'-~o] ' .(2,17) 

where 

2 (Eo l~  
D = (,~ + 2) (~ - ~o) \ ~ o /  r-(~/~' 

1 

~ =  (~+'~)-~-r--~), r  p ' +  (v') ~ (~')~-Wq'. 
0 

It has been shown [9, 10] that the integral tends to a finite limit for F § I and that for 
F = I we have ~ = (2v) -I if we derive ~ from the available theoretical and tabulated data 
such as in [8], we find that in the entire range in F from 1.1 to 1.4 the value of the inte- 
gral is close to the limiting Value ~(F = I) and differs from it by • 

Then the expression for ~ can be put as 

f 2 ~ . (v)  (2.18) 

We use (2.17), (2.18), (2.2), and (2.3) to get a relation between the shock-front pres ~ 
sure and the distance from the explosion center: 

2(I--80) - n2= 4v r--I E0 -v 
p = r_T_~q__ p0 w a(~) r+li_%rf , (2.19) 

These equations indicate that the increase in the shock-wave parameters when the medium 
contains an incompressible phase is due to the increase in the shock-wave speed by a factor 
(I -- e0) -I by comparison with e0 + 0 for a given ratio of the mass concentrations. The shock- 
wave speed tends to infinity in the limiting case ~0 § I, which from the physical viewpoint 
is due to the perturbation speed tending to infinity for an incompressible medium. 

It follows from (2.19) that the minimum pressure occurs at a given distance from the 
explosion center in a medium having the maximal shock compressibility for the gas phase [this 
is defined by (F + I)/(F -- I)] with the minimum value of s 

Therefore, in the general case of arbitrary ~ the pressure field and the shock-wave 
velocity in a two-phase medium are dependent not only on the density, the explosion energy, 
and ~ [10] but also on the volume proportion of condensed phase. If we neglect E (in that 
case p = gd + Dg), we get the relations previously derived for the shock-wave parameters in 
a relaxing two-phase medium [9], while for F = F0 we get those for a thermodynamically equi- 
librium one [6]. 

In conclusion we note that (1.1) and (1.2) in principle can describe the motion of a 
wide class of media such as gas-suspension ones, gas--liquid foams, and bubble media. How- 
ever, it is necessary to check assumptions I-5 in solving particular problems. 
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POROUS-SPECIMEN ADIABATS AND SOLID-COPPER EXPANSION ISENTROPES 

M. V. Zhernokletov, V. N. Zubarev, 
and Yu. N. Sutulov 

UDC 532.593 

Experiments on shock compression of porous bodies are important in providing information 
on the thermodynamic parameters of substances at high pressures and temperatures. Specimens 
of low initial density enable one to obtain higher energies and temperatures with a given 
specific volume for the shock-compressed material. 

It is usually assumed in interpreting experiments with porous specimens that at pres- 
sures above the collapse one, at which the density is close to that of the continuous ma- 
terial, the temperature has time to equalize during compression at the shock-wave front, i.e., 
the states attained are equilibrium ones. However, this requires experimental test. 

In [I], the grain size was varied from 0.5 to 100 ~m, but no effect on the shock-wave 
speed was found. This indicates thermal equilibrium for compressed porous specimens. 

Here we propose another way of checking the state equilibrium in shock-compressed po- 
rous specimens. The thermodynamic parameters of the compressed material are checked from 
the state parameters derived on unloading a previously compressed solid material. The moni- 
tored parameter was the density, and the values were compared for identical pressures and 
internal energies realized in two different processes. The density comparison for copper 
shows that the effects of possible deviations from equilibrium during compression of porous 
specimens do not exceed 1.5% at pressures above 20 GPa. 

I. The state of the material in a single-phase system is completely defined by any two 
thermodynamic parameters if the process is a thermodynamically equilibrium one. If one 
chooses for example the pressure p and energy E as these, the one can compare the densities 
O or specific volumes v = I/p on porous shock adiabats and expansion isentropes for the solid 
material for identical p and E .to check the consistency in the data and thus to observe pos- 
sible deviations from thermal equilibrium. 

A schematic p--u diagram is used (Fig. I) to explain the method. In the initial state, 
the expansion isentrope 2 for a solid specimen on the shock adiabat lis characterized by the 
parameters Pa, u~, E a = u2/2 (E = 0, p = 0, T = To); as the shock-compressed specimen ex- 
pands, the internal energy decreases. The transition from the hydrodynamic p--u variables to 
the thermodynamic p--0--E ones on the expansion isentrope 2 is provided by calculating the 
Riemann integrals that express the conservation laws for this type of self-modeling flow: 

du du 
, E , ( p ) = E ~ - -  P(dp/du) ' ( 1 . 1 )  P8 (P) = a + (dp tdu)s 

U s 

where the subscripts a and s relate correspondingly to the state on the shock adiabat and 
on the expansion isentrope. The Es(p) relation along the isentr~ e for the solid material 
can be converted to the p--u relationship 3, on which u(p) = r In the same coordinates, 
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